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A general factorized form of the dielectric function together with a fractional model-based parameter esti-
mation method is used to provide an accurate analytical formula for the complex refractive index in water for
the frequency range 108–1016 Hz. The analytical formula is derived using a combination of a microscopic
frequency-dependent rational function for adjusting zeros and poles of the dielectric dispersion together with
the macroscopic statistical Fermi-Dirac distribution to provide a description of both the real and imaginary
parts of the complex permittivity for water. The Fermi-Dirac distribution allows us to model the dramatic
reduction in the imaginary part of the permittivity in the visible window of the water spectrum.
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I. INTRODUCTION

Water is an important medium for many electromagnetic
applications—e.g., medical imaging and atmospheric and un-
derwater communication. It is therefore not surprising that
many measurements exist of the refractive index of water as
a function of wavelength �1�. For many practical applications
these “look-up tables” for the refractive index are sufficient;
however, for other purposes they are not. Two examples,
which each require an explicit analytic formula for the
wavelength-dependent refractive index of water, are the cal-
culation of van der Waals interactions and the modeling of
transient pulse propagation. The van der Waals force is used
to calculate interactions between dielectrics when these are
separated by water, such as those in colloidal systems �2�.
The other example, involving precursor propagation in water
�3–10�, uses the refractive index in conjunction with the
powerful methods of asymptotic analysis in the frequency
domain �11� and wave propagator analysis in the time do-
main �12� to carefully and accurately analyze the creation
and evolution of transient pulse propagation. Nevertheless,
despite recent progress, there is no good analytical model
which accurately describes the wavelength-dependent com-
plex refractive index in water �3,7,13,14�. The majority of
the existing models use linear combinations of Debye �or
Rocard-Powles� and Lorentz resonances �3,7,13�. Although
these representations do a good job of describing the real
part of the refractive index over large frequency intervals,
they are much less accurate in describing the imaginary part
for frequencies above 1 THz. A possible reason for the poor
fit to data for higher frequencies could be the lack of inter-
action terms because the polarized Debye dipoles and the
Lorentz harmonic oscillators are only added to each other
�15–17�. The Diaz-Alexopoulos model �14� is more success-
ful in describing the imaginary part of the refractive index
using a generalized fractional form of the dielectric permit-
tivity. This approach was first introduced by Berreman and
Unterwald �18� to describe reststrahlen reflectance data from
solids. The significance of the fractional form is that it allows
modeling of molecular interactions and anharmonic oscilla-
tors. Because of its makeup,

� =

�
m=1

M

�� − Zm�

�
n=1

N

�� − Pn�

, �1�

it automatically fulfills the necessary causality conditions
and by restricting M �N−1 it also decreases with wave-
length for higher frequencies in accordance with observa-
tions. The position of the zeros �Zm� and poles �Pn� can be
used to address phonon interactions, vibrations, and reso-
nances �19�. The Rocard-Powles, which is the first-order cor-
rection to the Debye model, has some of the fractional form
features but it does not have enough independent parameters
to allow for fitting to data over a large frequency interval.
Following Diaz and Alexopoulos, one can use the analogy
between electric circuits and a linear dielectric �20� to fit Eq.
�1� to published measured data for water �21�. This approach
captures the dramatic reduction in absorption for water in the
visible regime better than any other model; however, it is still
one to two orders of magnitude off for many frequencies.

The approach we have taken builds on the success by
Diaz and Alexopoulos �14� and uses a fractional form for the
dielectric permittivity. Compared with Diaz and Alexopoulos
we provide a formula of the real part of the complex permit-
tivity as well as a better description of the imaginary part of
the complex permittivity in the visible window of the water
spectrum, region 2 in Fig. 1. We do this by extending the
Diaz-Alexopoulos rational function approach in two ways:
we use more products in our rational function expansion and
we relate the poles to experimentally observed vibrational
and electronic resonances in water. Second, we use the
Fermi-Dirac distribution to model the reduced density of
states in region 2. The kinetic and potential energy terms in
the Fermi-Dirac distribution we obtain from a study by Tou-
kan and Rahman �22� where they use a flexible rotating wa-
ter molecule for calculating the kinetic part and an experi-
mentally verified Lennard-Jones potential for calculating the
potential energy. Our model is a first attempt to provide a
comprehensive analytic formula for the complex permittivity
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in water for use in theoretical calculations over large fre-
quency regions.

II. DERIVATION OF A FITTING ALGORITHM FOR
THE COMPLEX PERMITTIVITY OF WATER

It may seem strange that a “simple” medium such as wa-
ter could cause so many problems to model. The water mol-
ecule itself is relatively simple with two hydrogen atoms
covalently bonded to an oxygen atom. What is believed to
make liquid water so complex is the variable density of hy-
drogen bonding that connects the different water molecules
to each other, producing a dynamic entity �15�. In addition,
the chemical nature of a single hydrogen bond in water is
incompletely understood. The hydrogen bond is 10–20 times
weaker than the covalent bond �16�, placing it closer in
strength to van der Waals bonds. The issue of how much of
the hydrogen bond is covalent versus electrostatic in charac-
ter is a difficult one and is still under investigation for ab
initio modeling optical absorption in water �17�. Our ap-
proach avoids many of the difficulties associated with ab
initio calculations by averaging over large a volume of water
clusters. We use a volume of 10−9 m3 which consists of ap-
proximately 1020 water molecules. Since our main concern is
transient pulse propagation we use a volume that is based on
the physical size of a 100-fs laser pulse with a 5-mm radius
at 800 nm �10�.

Most fitting routines related to electromagnetic problems
work in either the time or frequency domain for which ge-
neric descriptions are given by exponentials and pole series,
respectively �23�. Due to the large database of absorption as
a function of wavelength for water �1�, we will mostly focus
on the frequency domain using the pole series approach for
representing the refractive index of water between 108 and
1016 Hz. The frequency interval was chosen solely based on
available measured data.

Our fitting routine is based on the usual expression for the
complex refractive index n���,

n��� = nr��� + ini��� . �2�

For our extended analysis, we introduce the two complex
functions a��� and b���, such that

nr��� = Re�a����Re�b���� , �3�

ni��� = Im�a����Im�b���� . �4�

The functions a��� and b��� are associated with microscopic
and macroscopic physical phenomena, respectively. a��� is
divided into two parts, a resonant and a nonresonant part,

aj��� = aj,res��� + aj,nres��� , �5�

where j refers to a particular resonance. The resonant part of
the a��� function in Eq. �5� can be expanded into a rational
function, where the power of the denominator polynomial is
larger or equal to that of the numerator,

aj,res��� = �
m=1

M
Rj,m

� − � j,m
, �6�

where � j,m is a complex resonance. The nonresonance part
can be expanded in terms of the complex frequencies � be-
tween powers 0 to P,

anres��� = �
p=0

P

Cj,p�p. �7�

The nonresonant part accounts for the frequency regions out-
side of the resonances. Combining the resonant and nonreso-
nant terms into a least-common-denominator form we obtain
a rational function representation of a��� based on the ratio-
nal fitting model by Miller �23�,

a��� = �
i=1

M
Nj���
Dj���

, �8�

where

Nj��� = �
�=0

nj

Nj
���, Dj��� = �

�=0

dj

Dj
���. �9�

Coefficients Nj
� and Dj

� are unknowns. To obtain these coef-
ficients, we fit against the measured data as tabulated by
Segelstein �21�. The previously introduced coefficients Rj,m
and Cj,p in Eqs. �6� and �7� have been absorbed into the new
fitting coefficients Nj

� and Dj
�. The physical significance of

a��� is similar to the general dispersion relation by Berre-
man and Unterwald with the addition of the double sum
which we use to center the � sums around eight major reso-
nances of the water spectrum in Fig. 3 and Table I in the next
section.

It should be possible to use the pole-zero series of the
function a��� to obtain a fit to existing water data. However,
we found that, using only the a��� function, we could never
fit the eight orders of magnitude decrease in the imaginary
part of the refractive index in the visible window better than
in the work by Diaz and Alexopoulos �14�. To circumvent
this difficulty we approach the visible window as if it is a
band gap with dramatically reduced density of states. The
function b��� was introduced to provide a method to model
the visible window using a statistical approach. b��� can be
expressed as

b��� = D��� + L��� , �10�

where D��� and L��� are based on classical Debye one-pole
and Lorentz double-pole relaxation models multiplied by the
Fermi-Dirac distribution F���, respectively,

D��� =��0�1 −
1

ln ln��2/�1�	ln
i��2 + 1

i��1 + 1
F��� , �11�
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L��� =��� −
�0

2��s − ���
�2 − 2i�� − �0

2F��� . �12�

�0 and �� are the low- and high-frequency responses for the
Debye and Lorentz distributions, respectively. F��� is de-
fined as

F��� =
1

1 + e��/�3/2kT�−Ep
, �13�

�=1.062	10−34 �J /Hz� Plank’s constant, Ep is the potential
energy, k=1.38	10−23 �J /K�, and T is the temperature in
degrees kelvin. In reference to Fig. 1, we used the Debye
term to provide the general structure to region 1 which is
characterized by the molecular polarizability of the water
molecules and their rotational and vibrational resonances. In
a similar manner we used, the Lorentz term to describe the
general electronic resonance behavior of region 3. Region 2
is the difficult region to model. Even though the reduced
absorption in region 2 suggests a lack of either Debye or
Lorentz interactions, we know, e.g., that the resonant peaks
in region 2A are all due to vibrational overtones lending
themselves to a Debye description �24� and the increase in
absorption in region 2B is mostly due to increased electronic
transitions �25�. So recognizing that both vibrational and
electronic interactions are occurring in region 2, but with
reduced overall effect, we use the idea behind the Lindhard
equation for an electron gas �26�. We multiply the refractive
index parts by the Fermi-Dirac distribution to compensate
for the drastically reduced density of states in the visible
window region. To describe the potential energy Ep, we use
the expression derived by Toukan and Rahman �22�,

Ep = VO-O + VO-H + VH-H, �14�

where the subscripts indicate the atoms responsible for the
potentials. For the intermolecular interactions, VO-O, between
oxygen atoms of different water molecules we use Toukan’s
Lennard-Jones potential

Ep = − 
A

r
�6

+ 
B

r
�12

, �15�

with the constants A=0.371 22 nm �K J mol−1�1/6 and B
=0.3628 nm �K J mol−1�1/12, which they obtained in their
study �see Fig. 2�. The smaller intramolecular contributions
to the potential energy �from the O-H and H-H vibrations�
were omitted in this first round of simulations. Toukan and
Rahman’s model was based on a flexible rotating water mol-
ecule, and we use their approach to give us an extra param-
eter to model the absorption dip. The equivalent of the ki-
netic energy in the Fermi-Dirac distribution is given by the
h� term in the exponent. Assuming that most of this kinetic
energy is coming from the rotation of the water molecule we
obtain

m�2r���
2

= �� . �16�

The distance r��� is a frequency-dependent parameter which
allows us to modify the behavior of the imaginary refractive

index in region 2. The distance r is the same as in the poten-
tial energy equation �15�, Fig. 2. The final expressions for
our fitting expression as a function of frequency can then be
written as

ai��� = �
i=1

M �
�=0

ni

Ni,���

�
�=0

di

Di,���

, �17�

b��� =� �0

1 + e��/�3/2kT�−Ep����1 −
1

ln��2/�1�	ln
i��2 + 1

i��1 + 1

+��� −
�0

2��0 − ���
�2 − �0

2 − i2��

1

1 + e��/�3/2kT�−Ep��� , �18�

Ep��� = 
 2�

m�
�6�B12
 2�

m�
�6

− A6	 . �19�

III. SIMULATIONS IN WATER

As mentioned earlier, the double sum in Eq. �8� is per-
formed near the resonances in regions 1, and 2A, and 2B,

TABLE I. Resonance frequencies used for the fractional dielec-
tric function.

Frequencies rad/s

�1 1.9	1013

�2 9.4	1013

�3 1.9	1014

�4 4.4	1014

�5 6.0	1014

�6 1.3	1015

�7 5.0	1015

�8 1.3	1016

FIG. 1. �Color online� Different regions of the imaginary refrac-
tive index for water.

PHENOMENOLOGICAL MODEL TO FIT COMPLEX… PHYSICAL REVIEW E 75, 046608 �2007�

046608-3



Fig. 1. The general formula uses M resonances which for our
water simulations is set to the value M =8. The resonances
we used are shown in Table I �see also Fig. 3�. Resonance 1
is from librational modes in the water, resonances 2–7 are
from different combinations of stretching and bending
modes, and resonance 8 is an electronic transition �27�. For
each of these resonances we adopted a fractional form for
describing the refractive index, Eq. �9�. The different ni and
di ranged between 1–5 and 6–14, respectively, depending on
the resonance; i.e., different resonances converged with dif-
ferent speeds towards the experimental data. This approach
gives a reasonable fit to the real refractive index over the
108–1016-Hz region and for the imaginary refractive index,
except in the visible window. Introducing the b��� function
and using the distance r��� between the adjacent oxygen
atoms as our key fitting parameter, we are able to adjust our
formula to the visible window in the imaginary part. In Fig.
4, we plot the functional dependence of r��� in the frequency
regime 108–1016 Hz required to optimize the fit to experi-
mental data. A distance of r�3 Å is determined for the mini-
mum value of the imaginary part of the refractive index,
which compares well with the minimum energy based on
Toukan and Rahman’s Lennard-Jones potential. The needed
variation of r, for different frequencies, to optimize the fit-
ting process is physically reasonable since it describes the

natural water network vibrations. Our final result for fitting
the real and imaginary parts of the refractive index to mea-
sured data is shown in Figs. 5 and 6. The fitted parameter
values used for the plots in Figs. 5 and 6 are not printed due
to the large number; however, they may be retrieved from
our website �28� together with the complete MATLAB code
used for the fitting procedure.

Visual inspection of the curves suggest that the fitting
procedure is quite successful. To obtain a more quantitative
measure of the difference between model and measured data
we use the error analysis described by Liebe et al. �29�. We
calculate the absolute magnitude of the residuals 
re
= 
Re�ndata−nmodel�
 and 
imag= 
Im�ndata−nmodel�
, respec-
tively, Figs. 7 and 8.

We observe, from Figs. 7 and 8, that the residual for the
real part of the refractive index is smaller than 10% for all
frequencies except around 5	109 Hz and 5	1014 Hz where

� � � � � ��
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FIG. 2. �Color online� Energy potential for the oxygen-oxygen
interaction based on the Lennard-Jones potential in Eq. �15� as de-
rived by Toukan and Rahman �22�.

FIG. 3. �Color online� Resonances used for fitting procedure.
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FIG. 4. Variations of r��� with frequency for obtaining optimum
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FIG. 5. �Color online� Real refractive index.
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the error is slightly larger than 10%. For the imaginary part
of the refractive index the residual is always smaller than
1%. These relatively small residuals should not be unduly
stressed since the experimental data have significant, and in
some cases undocumented, errors associated with them—
e.g., �30� �see Fig. 9�.

For completeness, we are taking the Fourier transform of
the fitted refractive index to obtain, graphically, the time de-
pendence of the refractive index. It is observed that the water
has several time constants ranging between femtoseconds
and microseconds. However, since our fitting procedure is
based on experimental data with 1–3 Å wavelength resolu-
tion it is unclear what information can be concluded for time
periods larger than approximately 1 ps.

IV. DISCUSSION AND CONCLUSION

Using a combination of a fractional form for the dielectric
function and a statistical physics approach to modeling in-
tramolecular interactions, we have derived a phenomenologi-
cal formula for the refractive index of water over the fre-
quency region 108–1016 Hz. Using the model-based pa-
rameter estimation algorithm we have fitted our formula to
the experimental data with better than 1 part in 10 accuracy
including the visible window in the imaginary part of the
refractive index.

Note that for any small subset �except for the visible win-
dow� of the frequency region 108–1016 Hz it is possible,
with our formula or with others, to perform a more accurate
fit than the one seen in Figs. 5 and 6. For example, in themi-
crowave region one could use the Rocard-Powles function to
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FIG. 6. �Color online� Imaginary refractive index.
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FIG. 7. �Color online� Absolute magnitude of the residuals for
the real refractive index.
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FIG. 8. �Color online� Absolute magnitude of the residuals for
the imaginary refractive index.
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obtain a more accurate fit than ours. However, for studies
requiring an analytic formula for water’s permittivity over a
large frequency range including the visible window we be-
lieve that our formula is the most accurate to date.
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